
Introduction

Determining the probability distribution (PD) of such 
random events as floods by estimating their behavior 
has always been a significant problem. Identifying the 
appropriate PD of floods is probably the most important 
step in flood frequency analysis. Accordingly, many 
studies all over the world have investigated how to 
determine an appropriate PD of floods [1-16]. The 

selection of techniques for assessing flood frequency 
in specific conditions depends on several dynamics, 
including national tradition, knowledge of the modeler, 
the aim of a study, governmental necessities, and data 
accessibility [17].

Cunnane [18] investigated the flood frequency 
determination techniques adopted by 55 organizations 
from 28 countries. Gumbel, two-parameter lognormal 
(LN2), P3, and log-Pearson type 3 (LP3) distributions 
appear to be the most common of the six extant 
distributions, with the other two being extreme value type 
2 (EV2) and GEV distributions.
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Abstract
This study investigates the existence of a single parent flood frequency distribution on a Turkish 

scale. In the design of hydraulic structures, estimating the project flood of a given period or probability is 
usually the first step. Determining an acceptable design criterion depends substantially on the probability 
distribution of floods. In this study, annual peak series from 268 Turkish rivers was collected and 
a database of L-Moment ratios was constructed. The best-fit probability distribution (PD) model was 
investigated among seven distribution models (generalized logistic, GLO, generalized extreme value, 
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used in this study consisted of two sequential procedures. The first graphical procedure evaluated the 
L-Moment diagrams visually while the second procedure is based on the hypothetical testing procedure 
of L-Moment diagrams. The results of a graphical inspection of the dataset show GEV distribution as a 
potential parent PD of the floods in Turkey. A more detailed hypothetical testing procedure comprises 
Monte Carlo simulations produced from a GEV model. In a hypothetical testing procedure the variability 
of L-skewness and L-kurtosis values of sample data are situated within the theoretical limits of GEV 
distribution. Consequently, the GEV distribution is accepted as a single parent PD for annual maximum 
flow series of Turkey. 
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McMahon et al. [19] examined the PD of yearly 
maximum flows of 974 gauging stations all over the 
world using conventional moment diagrams, and LP3 
distribution provided a favorable fit to peak flows, while 
the LN2, GUM, and Gamma (GAM) distributions did 
not. Later studies show that the ordinary product moment 
diagrams generate false results because the estimators 
of conventional product moment ratios have remarkable 
bias, particularly for short and highly skewed records 
[20].

Onoz and Bayazit [3] investigated the suitability of 
seven PDs (N, LN2, LN3, GUM, GEV, P3, and LP3) to 
the observations of peak flows at 19 stations all over the 
world. The record lengths of data ranged from 60 years 
to 165 years. Using various procedures, they identified 
GEV as the “most appropriate distribution” in most cases. 
Therefore, GEV could be considered a universal PD for 
flood frequency analysis.

Vogel and Wilson [21] studied the selection of the 
PD function of yearly peak flows in the United States 
with data from 1,455 sites using L-moment diagrams. 
They identified the LP3, LN3, and GEV distributions as 
suitable PDs in the U.S., and considered other two- and 
three-parameter options as inappropriate for the whole 
continent. 

According to Castellarin et al. [17], some European 
countries recommend GEV distribution (i.e., Austria, 
Italy, Germany, and Spain), while other countries prefer 
other frequently used distributions, such as GUM (i.e., 
Spain and Finland), and generalized Pareto distribution 
(GPA; i.e., Belgium). Moreover, in Slovenia the Agency of 
the Environment recommends the use of five distribution 
models (i.e., N, LN, P3, LP3, and GUM), Slovakia often 
uses the GAM, LN3, LP3, and GEV distributions, and the 
UK generally prefers the generalized logistic distribution 
(GLO) [15].

The PDs for flood frequency analysis are frequently 
selected by performing statistical tests, such as Anderson-
Darling, chi square, and Kolmogorov-Smirnov. Empirical 
appropriateness also plays a significant role in PD 
selection [18]. However, the aforementioned tests show 
some obvious restrictions, including non-objective and 
uncertain results, as reflected in the fact that more than 
one PD frequently passes the tests [22, 7].

A literature review identifies several criteria, such as 
Akaike information criterion (AIC), Anderson-Darling 
criterion (ADC), and Bayesian information criterion 
(BIC) as significant alternatives to the above-mentioned 
statistical tests. 

Laio et al. [7] showed that these criteria generated 
promising results in model selection, but their conclusions 
were not convincing enough because the criterion to be 
accepted in practical applications remains unknown. 
They stated that the AIC and BIC generally select the 
identical PD, while the ADC often selects a different PD.

The L-moments ratio diagrams, which are used 
to determine the observed data that are closest to the 
theoretical PD, are among the most common tools for 
selecting PDs in flood frequency studies [23]. However, 

this method is not completely objective since the goodness 
of fit of a theoretical PD to the sample data is usually 
determined based on graphical evaluation. 

Pandey et al. [24] proposed the use of a distance-based 
measure between the observed and simulated L-kurtosis 
values to overcome the limitation of the graphical 
evaluation.

Likewise, Kroll and Vogel [25] proposed a criterion 
for addressing the difficulties in the graphical analysis 
of L-moment ratio plots. They also recommended the 
use of another distance-based measurement between the 
observed and simulated L-moment values [7].

In the last decade, considerable effort has been devoted 
to estimate the best-fit frequency distribution in flood 
frequency studies using the above-mentioned methods. 

Saf [26] aimed to obtain flood frequency estimations 
from 47 sites in the western Mediterranean Basins of 
Turkey. Regional flood frequency estimations are made 
for three sub-regions using seven various distributions 
(GLO, GEV, N, P3, GPA, Wakeby, and Kappa). The 
L-moment goodness-of-fit statistic showed P3 as the 
most appropriate PD for Antalya and lower-western 
Mediterranean sub-regions, and GLO for the upper-
western Mediterranean sub-region.

Noto and La Loggia [27] analyzed annual maximum 
peak flow series from more than 50 gauged stations of 
Sicily in Italy. The region was divided into five sub-
regions. Based on the L-moment ratio diagram and other 
statistical criteria, GEV was stated as the best-fit PD from 
various distributions. The flood frequency curves are 
constructed using GEV distribution.

Haddad and Rahman [11] examined BIC, AIC, AIC-
second order variant (AICc), and a modified ADC with 
peak flow series from Tasmania in Australia. They found 
that ADC was more effective in identifying the parent 
PD properly than the AIC and BIC for three-parameter 
distributions. AIC and BIC, on the other hand, were better 
at representing the parent distribution for two-parameter 
distributions. From various frequency distributions, the 
two-parameter log normal distribution was found to be 
the best choice.

Rahman et al. [13] attempted to examine the suitability 
of 15 frequency distributions based on the peak flow series 
in Australia. The best-fit probability distribution was 
determined with the Anderson-Darling test, Kolmogorov-
Smirnov test, BIC, and AIC. The L-moments ratio 
diagram was used to make a visual evaluation. They 
indicated that a single parent PD could not be identified 
for peak flows in all the states of Australia. However, the 
P3, GEV, and GPA distributions were determined as the 
best-fit distributions.

Salinas et al. [15] attempted to find a parent PD 
on a European scale by using a database for Europe 
that contained the yearly peak flows of 4,105 sites in 
15 European countries. They also investigated how 
an appropriate PD could be selected using L-moment 
ratio diagrams. An initial examination of the database 
identified the GEV distribution as a potential PD for 
Europe. However, in a hypothesis-testing procedure, the 
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Monte Carlo simulations rejected the use of the GEV as a 
single parent PD for Europe.

Kumar et al. [28] performed regional flood frequency 
analysis using the method of L-moments, artificial neural 
network (ANN), and fuzzy inference system (FIS) for the 
lower Godavari subzone of India with the annual peak 
flow data of 17 catchments. According to the L-moment 
ratio diagram and Zdist statistics, the P3 distribution was 
selected as the best-fit PD for the entire region.

Ahmad et al. [29] compared various parameter 
estimation methods to identify the best-fit probability 
distribution of annual peak flow series for flood frequency 
analysis in Pakistan. The best-fit probability distribution 
is determined using the probability plot correlation 
coefficient (PPCC) test, Anderson Darling (AD) test, 
and L-moments ratio diagram for each site. Their results 
indicate that GPA is the most appropriate PD for most of 
the stations, followed by GLO and GEV.

Koutsoyiannis [30] showed that the extreme value 
distribution of type II (EV2) is a consistent choice to 
apply to hydrological extremes. Based on the theoretical 
analyses, an extensive empirical investigation was 
performed using a collection of 169 of the longest available 
rainfall records worldwide, each having 100-154 years of 
data. The results verified the theoretical results. 

This study constructed a dataset of L-moment ratios 
that comprised the annual peak flows of 268 Turkish 
rivers. The best-fit PD model was investigated using 
the L-moment ratio diagram framework. The most 
important advantage of the L-moment framework is that 
L-moment diagrams are evaluated not only visually but 
also as a measurable tool by investigating the appropriate 
probability distribution. 

In the graphical inspection, the weighted moving 
average (WMA) series of L-coefficient of skewness 
and L-coefficient of kurtosis values (L-Cs–L-Ck pairs) 
were plotted on the L-moment ratio diagram. The visual 
inspection of WMA series identified the GEV model as 
a better candidate for annual maximum series compared 
with the other distributions (GLO, GPA, LN3, P3, GUM, 
and N). A more detailed hypothetical testing procedure 
– including 10,000 Monte Carlo simulations produced 

from a GEV model – reveals that GEV distribution 
successfully characterizes the Turkish floods as a single 
parent frequency distribution. 

  

Data and Study Area

This work examines the annual flood peak datasets 
of 268 river gauging stations all over Turkey. The record 
lengths range between 25 and 65 years with a mean record 
length of 35 years. Fig. 1 shows the physical locations of 
these stations. The gauging stations are scattered all over 
the country rather uniformly. 

Turkey is located in the northern hemisphere on  
the Anatolian Plateau and the Thrace Peninsula, in an east-
west direction between Europe and Asia. The territory of 
Turkey lies between 36-42° north parallels and 26-45° 
east meridians, and roughly resembles a rectangle. The 
country is surrounded by the Mediterranean Sea, the 
Black Sea, and the Aegean Sea. There are generally four 
climate types in the country. In the north, the Black Sea 
climate is rainy in all seasons; in the west and south, the 
Mediterranean climate is hot and dry in summers and 
warm and rainy in winters; in Central Anatolia and in 
Southeastern Anatolia a semi-arid climate exists, and in 
Eastern Anatolia the continental climate is very cold in 
winter and more or less rainy in the long summers.

L-moment Ratio Diagram Framework

L-moments and L-moment Ratio Diagrams

L-moments are linear combinations of order statistics, 
which are robust to outliers and almost unbiased for 
short data series. These advantages make L-moments 
especially appropriate for flood frequency analysis, 
as well as determining probability distribution and 
estimation of distribution parameters [23]. Greenwood 
et al. [31] defined L-moments as linear combinations of 
probability-weighted moments (PWM):
 

Fig. 1. The locations of flow-gauging stations.
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                       (1)

…where F(x) is the underlying probability distribution 
function of x. The L-moments are given as the linear 
combinations of PWMs:

                                  (2)

                             (3)

                    (4)

       (5)

λ1 and λ2 are the L-mean and L-standard deviation and 
determine central tendency and dispersion, respectively. 
The L-Moment ratios are calculated as follows:

                      (6)

                      (7)

                     (8)

Hosking [23] showed that the absolute value of L-Cs 
and L-Ck are smaller then 1 (|L-Cs|<1, |L-Ck|<1) and that 
the L-Cv is in the range of 0<L-Cv<1, for x ≥0.

The L-moment ratio diagrams assess the fitness of 
different PDs by inspecting the closeness of the sample 
L-moments to the curves of different theoretical PDs 
[23]. The importance of L-moment ratio diagrams in 
selecting an appropriate PD has been frequently cited in 
the literature [23-24, 26-29, 32-37]. A further advantage 
of these diagrams is the convenience of L-moments, 
particularly for short data since the L-moment estimates 
are less biased than the product moment estimates.

In practice, the L-moment ratio diagrams take 
two different forms. The first diagram (L-Cv–L-Cs) 
includes plots of the L-coefficient of variation versus the 
L-coefficient of skewness and is used for two-parameter 
PDs, while the second diagram (L-Cs–L-Ck) plots the 
L-coefficient of skewness against the L-coefficient 
of kurtosis and is frequently used in studying three-
parameter PDs. This study employs the L-Cs–L-Ck 
diagram that compares the considered three-parameter 
distributions, and also N and GUM together.

Graphical Inspection Using Moving 
Average Series

Empirical data usually include noise because of 
sampling uncertainty. Salinas et al. [15] proposed the use 
of WMA series (moving average series weighted with 
record length) to reduce noise and effectively examine 
the most appropriate PD that reflects the statistical 
characteristics of the observed data. The WMA is 
obtained by calculating the weighted average of 10 
adjacent L-Cs samples and plotting them against the 

weighted average of the 10 corresponding L-Ck samples 
on an L-moment ratio diagram. Therefore, to decrease 
the effect of sampling variability in small samples, each 
L-moment ratio is proportionally weighted to the sample 
record length [15]. 

Fig. 2 shows the L-moment ratio diagram that 
includes the L-moment ratios of all flow stations (gray 
circles) as well as five lines and two plots that illustrate 
the theoretical L-Cs–L-Ck relationship of the PDs, 
including GEV, GLO GPA, LN3, PE3, N, and GUM. The 
WMA line, which represents the average behavior of 
sample L-moment ratios, appears closer to the theoretical 
distribution curve of GEV than the other PDs. The trend 
of the WMA line shows that GEV can better represent the 
frequency characteristics of the annual peak flows of the 
Turkish rivers than the other considered PDs. 

Hypothetical Testing Procedure

A graphical analysis using the moving average series 
shows that GEV distribution best represents the mean 
statistical properties of all data among all available PDs. 
To test whether the GEV distribution is an effective parent 
PD of related peak flows, Salinas et al. [15] proposed a 
comparison of the dispersion of sample L-moment ratios 
and the random L-moment ratios that were produced from 
the GEV distribution via Monte Carlo simulations. 

Given that the sample distribution passed the 
normality test, the L-Cs rates of the peak flow series are 
expected to be random across the stations as defined with 
a normal distribution with a mean of 0.25 and a standard 
deviation of 0.13. In the Monte Carlo simulations, 10,000 
L-Cs values are generated from the normal distribution. 
Using these values, 10,000 stations are produced from a 
GEV distribution with a mean data length of 35 years.

Fig. 2. L-Cs–L-Ck diagram with the weighted moving average 
(WMA) series for the whole database.
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The L-moments and their ratios are calculated from 
the peak flow data of the 10,000 generated GEV stations. 
In the L-Cs–L-Ck diagram, these 10,000 L-Cs–L-Ck 
would not necessarily be located on the theoretic curve 
of the GEV distribution because of the biases in the 
estimations of L-moments [15]. 

To simplify the analysis, the diagram is split into five 
bins with equal distances for L-Cs values ranging from 0 
to 0.55. The dispersion of the L-Ck rates for each bin is 
signified by the 10, 25, 50, 75, and 90% percentiles. Fig. 3 
presents the related box plots and the GEV curve.

A statistical hypothesis testing procedure is performed 
to test whether the PD of all Turkish stations represented 
by the GEV model is to be accepted or rejected. The null 
hypothesis H0 posits that for each bin, the pth percentile 
of the L-Ck values of the observed data does not 
significantly differ from the pth percentile of all stations 
that are randomly drawn from the GEV distribution.

The percentiles are distributed according to binomial 
distribution. And for the series with a sample length of 

n>20, the binomial distribution approximates a normal 
distribution with a mean of np and a standard deviation of 

. Conover [38] proposed calculating the 
confidence intervals of the percentiles according to the 
rank number in the ordered data. The lower and upper 
confidence limits are calculated as follows and then 
rounded up to the next integer:

   and      (9)

            (10)

…where z is the standard normal deviate. The lth and 
uth observations denote the lower and upper confidence 
limits of the related percentile with a confidence level of 
(1-α)%.

Table 1 shows the observed L-Ck percentiles in each 
bin. At the 5% significance test, all of the observed L-Ck 
percentiles are within the confidence limits, whereas the 
dispersions of the L-Ck percentiles of the observed and 
simulated data do not significantly differ from each other 
in any of the L-Cs bins. At the 10% significance test, 
only one value of the L-Ck percentiles was outside the 
confidence limits (in bold). The null hypothesis, which 
posits that the percentiles (L-Ck10, L-Ck25 L-Ck50, L-Ck75, 
and L-Ck90) of the sample data are equal to the percentiles 
of the randomly generated GEV series of Turkish 
floods, is accepted for all the percentiles and bins with a 
significance level of α = 5%, as well as for almost all the 
percentiles and bins with a significance level of α = 10%. 

The result of the hypothetical testing procedure is 
more robust than that of the graphical inspection of the 
weighted moving average series.

Discussion

The results of both the graphical inspection and 
hypothetical testing procedures using the Monte Carlo 
simulations indicate that choosing GEV as a parent PD 
of Turkish floods fully describes the variability of sample 
L-moment ratios. The graphical inspection hints about 
the suitability of GEV distribution. The simulation results 
concerning the dispersion of L-moment ratios around the 

Fig. 3. The distribution of 10,000 L-Ck simulations, all randomly 
drawn from GEV distribution (blue box plots) and the distribution 
of sample L-Ck values (red box plots).

L-Ck percentile
Range of L-Cs values per bin

0.-0.11 0.11-0.22 0.22-0.33 0.33-0.44 0.44-0.55

90% 0.178 0.215 0.272 0.344 0.438

75% 0.145 0.187 0.231 0.309 0.399

50% 0.114 0.141 0.191 0.264 0.351

25% 0.069 0.099 0.150 0.219 0.306

10% 0.038 0.072 0.119 0.193 0.267

Table 1. The observed L-Ck values of percentiles (The value rejecting a 10% significance test shown in bold).
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GEV distribution curve indicate that the spread of L-Ck 
rates is within the accepted confidence limits. Therefore, 
GEV is an appropriate parent PD for representing the 
behavior of floods with regard to the sample L-moment 
ratios.

As the main inspiration for this study, Salinas et 
al. [15] showed that the GEV distribution alone could 
not perfectly define the variability of the L-moments 
estimated from the European database. They emphasized 
that a single analytical expression on large scales and 
in different processes could not sufficiently explain all 
possible local characteristics. However, they identified 
the GEV distribution as an acceptable parent PD for 
representing the median behavior of the L-moment ratios 
of the observations. 

Conclusions

Several methods in the literature can be used to 
determine the most appropriate PD model for floods. 
As described in the introduction, statistical tests  
(i.e., Kolmogorov-Smirnov, chi-square, and Anderson-
Darling tests), criteria (i.e., AIC, BIC, and ADC), and 
graphical tests (i.e., product moment ratio and L-moment 
ratio diagrams) are the most commonly used techniques 
for PD model selection. However, each of these methods 
has some incomplete or objectionable aspects. The 
L-moment framework used in this study demonstrate that 
with the help of measurable criteria, the evaluations from 
the L-moment ratio diagrams are more powerful than 
those from visual analysis. 

This study examines a single parent probability 
distribution of Turkish floods across different locations 
and scales. A graphical inspection using moving average 
series and a hypothetical testing procedure using Monte 
Carlo simulations are conducted one after another. 
Through a graphical inspection, the WMA line shows that 
the GEV distribution can better represent the frequency of 
the annual peak flows of Turkish rivers compared with the 
other PDs. A hypothetical inspection is also performed 
by comparing the dispersion of L-moment ratios of the 
observed data and the simulations where each stations 
represents a random sample of L-moment ratios that are 
produced from GEV distributions. The dispersion of the 
L-Ck rates for each bin is signified by the 10, 25, 50, 75, 
and 90% percentiles and presented with the related box 
plots and the GEV curve in Fig. 3. The null hypothesis, 
which posits that the L-Ck percentiles of the sample 
data are equal to the L-Ck percentiles from a randomly 
generated GEV series of Turkish floods, is accepted for all 
cases with a significance level of α = 5% and for almost all 
cases with a significance level of α = 10%. In conclusion, 
the GEV distribution, as a single parent PD, successfully 
represents the statistical properties of Turkish floods.
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